Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 79(2): 307-322, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37140231

RESUMO

BACKGROUND AIMS: Cholangiocarcinoma (CCA) is a highly lethal malignancy originating from the biliary ducts. Current CCA diagnostic and prognostic assessments cannot satisfy the clinical requirement. Bile detection is rarely performed, and herein, we aim to estimate the clinical significance of bile liquid biopsy by assessing bile exosomal concentrations and components. APPROACH RESULTS: Exosomes in bile and sera from CCA, pancreatic cancer, and common bile duct stone were identified and quantified by transmission electronmicroscopy, nanoparticle tracking analysis, and nanoFCM. Exosomal components were assessed by liquid chromatography with tandem mass spectrometry and microRNA sequencing (miRNA-seq). Bile exosomal concentration in different diseases had no significant difference, but miR-182-5p and miR-183-5p were ectopically upregulated in CCA bile exosomes. High miR-182/183-5p in both CCA tissues and bile indicates a poor prognosis. Bile exosomal miR-182/183-5p is secreted by CCA cells and can be absorbed by biliary epithelium or CCA cells. With xenografts in humanized mice, we showed that bile exosomal miR-182/183-5p promotes CCA proliferation, invasion, and epithelial-mesenchymal transition (EMT) by targeting hydroxyprostaglandin dehydrogenase in CCA cells and mast cells (MCs), and increasing prostaglandin E2 generation, which stimulates PTGER1 and increases CCA stemness. In single-cell mRNA-seq, hydroxyprostaglandin dehydrogenase is predominantly expressed in MCs. miR-182/183-5p prompts MC to release VEGF-A release from MC by increasing VEGF-A expression, which facilitates angiogenesis. CONCLUSIONS: CCA cells secret exosomal miR-182/183-5p into bile, which targets hydroxyprostaglandin dehydrogenase in CCA cells and MCs and increases prostaglandin E2 and VEGF-A release. Prostaglandin E2 promotes stemness by activating PTGER1. Our results reveal a type of CCA self-driven progression dependent on bile exosomal miR-182/183-5p and MCs, which is a new interplay pattern of CCA and bile.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , MicroRNAs , Humanos , Animais , Camundongos , Dinoprostona , MicroRNAs/genética , Bile/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Ductos Biliares Intra-Hepáticos/patologia , Hidroxiprostaglandina Desidrogenases/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
2.
J Cell Mol Med ; 27(17): 2547-2561, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37488750

RESUMO

SMAD4 is a tumour suppressor and an important regulator of tumour immune scape which is downregulated in cholangiocarcinoma (CCA). STING1 is a vital sensing factor of abnormal DNA; however, the correlation between SMAD4 and STING1 and the role of the SMAD4-STING1 interaction in the progression of CCA have not yet been evaluated. Public database was analysed to reveal the expression of SMAD4 and STING1. A cohort comprising 50 iCCA, 113 pCCA and 119 dCCA patients was assembled for the study. Immunohistochemistry was employed to evaluate the expression levels of STING1 and SMAD4. In vitro transwell and CCK8 assays, along with luciferase reporter assay, were conducted to analyse the potential regulatory mechanisms of SMAD4 on the expression of STING1. Expression of SMAD4 and STING1 were downregulated in CCA tumours and STING1 expression correlated with SMAD4 expression. The overexpression of SMAD4 was found to suppress the migration, invasion and proliferation capabilities of CCA cells; whereas, the knockdown of SMAD4 enhanced these abilities. Furthermore, it was observed that SMAD4 translocated into the nucleus following TGF-ß1 stimulation. Knockdown of SMAD4 resulted in the inhibition of STING1 transcriptional activity, whereas the overexpression of SMAD4 promoted the transcriptional activity of STING1. Clinically, low STING1 and SMAD4 expression indicated poor prognosis in CCA, and simultaneously low expression of STING1 and SMAD4 predicts poorer patient survival. SMAD4 regulates the expression of STING1 through its transcription regulating function. Dual low expression of STING1 and SMAD4 had more power in predicting patient survival. These results indicate that SMAD4-silenced CCA may downregulate its STING1 expression to adapt to the immune system.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Proteína Smad4 , Humanos , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Colangiocarcinoma/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteína Smad4/genética , Proteína Smad4/metabolismo
3.
Front Pharmacol ; 14: 1336685, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38269274

RESUMO

Cholangiocarcinoma (CCA) is a highly aggressive malignant tumor that originates from the biliary system. With restricted treatment options at hand, the challenging aspect of early CCA diagnosis leads to a bleak prognosis. Besides the intrinsic characteristics of tumor cells, the generation and progression of CCA are profoundly influenced by the tumor microenvironment, which engages in intricate interactions with cholangiocarcinoma cells. Of notable significance is the role of extracellular vesicles as key carriers in enabling communication between cancer cells and the tumor microenvironment. This review aims to provide a comprehensive overview of current research examining the interplay between extracellular vesicles and the tumor microenvironment in the context of CCA. Specifically, we will emphasize the significant contributions of extracellular vesicles in molding the CCA microenvironment and explore their potential applications in the diagnosis, prognosis assessment, and therapeutic strategies for this aggressive malignancy.

4.
Front Immunol ; 13: 1049812, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389727

RESUMO

Biliary tract cancers (BTCs), including cholangiocarcinoma and gallbladder carcinoma, originate from the biliary epithelium and have a poor prognosis. Surgery is the only choice for cure in the early stage of disease. However, most patients are diagnosed in the advanced stage and lose the chance for surgery. Early diagnosis could significantly improve the prognosis of patients. Bile has complex components and is in direct contact with biliary tract tumors. Bile components are closely related to the occurrence and development of biliary tract tumors and may be applied as biomarkers for BTCs. Meanwhile, arising evidence has confirmed the immunoregulatory role of bile components. In this review, we aim to summarize and discuss the relationship between bile components and biliary tract cancers and their ability as biomarkers for BTCs, highlighting the role of bile components in regulating immune response, and their promising application prospects.


Assuntos
Neoplasias dos Ductos Biliares , Neoplasias do Sistema Biliar , Humanos , Bile , Neoplasias do Sistema Biliar/diagnóstico , Neoplasias do Sistema Biliar/patologia , Biomarcadores , Ductos Biliares Intra-Hepáticos/patologia , Imunidade
5.
Anal Sci ; 18(4): 391-5, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11999510

RESUMO

The fluorescence spectral characteristics and interaction of bis(ethylene)tin(bis(salicylidene)ethylenediamine) [Et2Sn(salen)] with DNA are described. The polarity of the solvent has a strong effect on the fluorescence characteristics of Et2Sn(salen). Et2Sn(salen) bound to DNA showed a marked decrease in the fluorescence intensity with a bathochromic shift of the excitation and emission peaks. A hypochromism in the UV absorption spectra was also observed. KI quenching and competitive binding to DNA between Et2Sn(salen) and ethidium bromide (EB) were studied in connection with other experimental observations to show that the interactive model between Et2Sn(salen) and DNA is an intercalative one. The pH and salt effect on the fluorescence properties was also investigated. The intrinsic binding constant was estimated to be 1.071 x 10(5) mol L(-1) in base pairs and the binding site number is 1.98, respectively. A linear relationship between F/F0 and the concentration of calf thymus DNA covers 5.1 x 10(-6) - 2.41 x 10(-4) mol L(-1), which can be utilized for determining traces of calf thymus DNA with a detection limit of 1.1 x 10(-7) mol L(-1) in base pairs.


Assuntos
DNA/análise , Etilenodiaminas/análise , Etilenos/análise , Estanho/análise , Animais , Sítios de Ligação , Ligação Competitiva , Bovinos , Quelantes/análise , Etídio/análise , Polarização de Fluorescência , Concentração de Íons de Hidrogênio , Indicadores e Reagentes , Desnaturação de Ácido Nucleico , Iodeto de Potássio/análise , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...